204 research outputs found

    On Tail Index Estimation based on Multivariate Data

    Full text link
    This article is devoted to the study of tail index estimation based on i.i.d. multivariate observations, drawn from a standard heavy-tailed distribution, i.e. of which 1-d Pareto-like marginals share the same tail index. A multivariate Central Limit Theorem for a random vector, whose components correspond to (possibly dependent) Hill estimators of the common shape index alpha, is established under mild conditions. Motivated by the statistical analysis of extremal spatial data in particular, we introduce the concept of (standard) heavy-tailed random field of tail index alpha and show how this limit result can be used in order to build an estimator of alpha with small asymptotic mean squared error, through a proper convex linear combination of the coordinates. Beyond asymptotic results, simulation experiments illustrating the relevance of the approach promoted are also presented

    Learning Reputation in an Authorship Network

    Full text link
    The problem of searching for experts in a given academic field is hugely important in both industry and academia. We study exactly this issue with respect to a database of authors and their publications. The idea is to use Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) to perform topic modelling in order to find authors who have worked in a query field. We then construct a coauthorship graph and motivate the use of influence maximisation and a variety of graph centrality measures to obtain a ranked list of experts. The ranked lists are further improved using a Markov Chain-based rank aggregation approach. The complete method is readily scalable to large datasets. To demonstrate the efficacy of the approach we report on an extensive set of computational simulations using the Arnetminer dataset. An improvement in mean average precision is demonstrated over the baseline case of simply using the order of authors found by the topic models

    Functional Bipartite Ranking: a Wavelet-Based Filtering Approach

    Full text link
    It is the main goal of this article to address the bipartite ranking issue from the perspective of functional data analysis (FDA). Given a training set of independent realizations of a (possibly sampled) second-order random function with a (locally) smooth autocorrelation structure and to which a binary label is randomly assigned, the objective is to learn a scoring function s with optimal ROC curve. Based on linear/nonlinear wavelet-based approximations, it is shown how to select compact finite dimensional representations of the input curves adaptively, in order to build accurate ranking rules, using recent advances in the ranking problem for multivariate data with binary feedback. Beyond theoretical considerations, the performance of the learning methods for functional bipartite ranking proposed in this paper are illustrated by numerical experiments

    Ranking the best instances

    Get PDF
    We formulate the local ranking problem in the framework of bipartite ranking where the goal is to focus on the best instances. We propose a methodology based on the construction of real-valued scoring functions. We study empirical risk minimization of dedicated statistics which involve empirical quantiles of the scores. We first state the problem of finding the best instances which can be cast as a classification problem with mass constraint. Next, we develop special performance measures for the local ranking problem which extend the Area Under an ROC Curve (AUC/AROC) criterion and describe the optimal elements of these new criteria. We also highlight the fact that the goal of ranking the best instances cannot be achieved in a stage-wise manner where first, the best instances would be tentatively identified and then a standard AUC criterion could be applied. Eventually, we state preliminary statistical results for the local ranking problem.Comment: 29 page

    Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics

    Get PDF
    In a wide range of statistical learning problems such as ranking, clustering or metric learning among others, the risk is accurately estimated by UU-statistics of degree d≥1d\geq 1, i.e. functionals of the training data with low variance that take the form of averages over kk-tuples. From a computational perspective, the calculation of such statistics is highly expensive even for a moderate sample size nn, as it requires averaging O(nd)O(n^d) terms. This makes learning procedures relying on the optimization of such data functionals hardly feasible in practice. It is the major goal of this paper to show that, strikingly, such empirical risks can be replaced by drastically computationally simpler Monte-Carlo estimates based on O(n)O(n) terms only, usually referred to as incomplete UU-statistics, without damaging the OP(1/n)O_{\mathbb{P}}(1/\sqrt{n}) learning rate of Empirical Risk Minimization (ERM) procedures. For this purpose, we establish uniform deviation results describing the error made when approximating a UU-process by its incomplete version under appropriate complexity assumptions. Extensions to model selection, fast rate situations and various sampling techniques are also considered, as well as an application to stochastic gradient descent for ERM. Finally, numerical examples are displayed in order to provide strong empirical evidence that the approach we promote largely surpasses more naive subsampling techniques.Comment: To appear in Journal of Machine Learning Research. 34 pages. v2: minor correction to Theorem 4 and its proof, added 1 reference. v3: typo corrected in Proposition 3. v4: improved presentation, added experiments on model selection for clustering, fixed minor typo

    On Anomaly Ranking and Excess-Mass Curves

    Full text link
    Learning how to rank multivariate unlabeled observations depending on their degree of abnormality/novelty is a crucial problem in a wide range of applications. In practice, it generally consists in building a real valued "scoring" function on the feature space so as to quantify to which extent observations should be considered as abnormal. In the 1-d situation, measurements are generally considered as "abnormal" when they are remote from central measures such as the mean or the median. Anomaly detection then relies on tail analysis of the variable of interest. Extensions to the multivariate setting are far from straightforward and it is precisely the main purpose of this paper to introduce a novel and convenient (functional) criterion for measuring the performance of a scoring function regarding the anomaly ranking task, referred to as the Excess-Mass curve (EM curve). In addition, an adaptive algorithm for building a scoring function based on unlabeled data X1 , . . . , Xn with a nearly optimal EM is proposed and is analyzed from a statistical perspective
    • …
    corecore